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be determined at this point:
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Some precautions are necessary, in particular, those due
to the determination of m. The relation obtained (6) contains
several subtractions, both in the numerator and the denom-
inator. This calculation is very sensitive to experimental
errors; hence, the utmost care is needed during measurements.
One possible way to avoid this delicate step is to determine
m directly, which can be done by introducing the tip of a lossy
termination inside of the loaded waveguide section [Fig. 8(c)],
in which case 2—0 and M =m. Of course, this can only be
done with rather thin slabs.
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Analysis of Thick Rectangular Waveguide Windows

With Finite Conductivity

1
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Abstract—The modal analysis method is used to calculate the re-
flection and transmission properties of a thick rectangular window
centrally located in a rectangular waveguide. Excellent agreement is
obtained between calculated and measured values for windows of
intermediate thickness. For thicker windows made of finitely con-
ducting materials, the results obtained using perfectly conducting
waveguide modes are inaccurate. However, by modifying the modes
so as to include some of the mode-coupling effects caused by the
surface currents, good agreement between calculated and measured
data is obtained for a very thick, finitely conducting window.
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INTRODUCTION

N THIS PAPER we are concerned with calculating the
]:[ reflection and transmission properties of a thick, finitely

conducting rectangular resonant window in a rectangular
waveguide. The geometry of the problem and the coordinate
system used are shown in Fig. 1. The window is assumed to be
centered in the waveguide with the energy propagating in the
z direction.

If the slot is infinitesimally thin, i.e., >0, variational
techniques can be used to obtain an expression for the equiva-
lent shunt impedance from which the reflection and trans-
mission coefficients can be calculated [1, pp. 88-97]. For
finite values of I, however, this method appears to be very
difficult to apply, except for the degenerate cases where the
slot width equals the waveguide width (capacitive obstacle)
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or the slot height equals the waveguide height (inductive
obstacle). Results for these cases are given by Marcuvitz [2].
The approach used in this paper is based on the modal an-
alysis method of Wexler [3]. This is a general method that
can be applied to a broad class of waveguide discontinuity
problems. In his paper, Wexler performed calculations for a
perfectly conducting two-dimensional obstacle, and compared
his results (with good agreement) to results given in Marcu-
vitz. In this paper, modal analysis is used to analyze a three-
dimensional obstacle, and the results are compared with mea-
surements. Good agreement is.obtained for resonant windows
of intermediate thickness (0<I/A<0.1) using perfectly con-
ducting waveguide modes to represent the fields in the window.
However, for a thick (! =), narrow (k<{), finitely con-
ducting (brass) resonant window, the results obtained using
modal analysis do not yield such good agreement with mea-
surements. However, by modifying the propagation constant
of the waveguide modes used to represent the fields in the
window so as to include the mode coupling due to surface cur-
rents, a significant improvement in accuracy is obtained.

PERFECTLY CONDUCTING WAVEGUIDE WINDOW

In order to apply the modal analysis method, we consider
our rectangular window to be a small waveguide, denoted as
region b in Fig. 1, while the large waveguide is denoted as
region a. The problem is now treated as a waveguide junction
problem. The transverse components of the modes in region
a are [1, p. 21]

| P
€, = U, sin (j?ry) cos (q—w—> (1)
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where u, and u, are unit vectors, p and ¢ are the conventional
mode numbers, and ¥, is the wave admittance of the ith mode
given by

(2)
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Similarly, in region b [lie, (w—1£)/2<y<(@w+2)/2 and
(v=h)/2<x<(v+h)/2], the transverse components of the

modes are
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Fig. 1. Geometry and coordinate system for a thick
rectangular slot in a rectangular waveguide.
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where 7 and 5 are the mode numbers and s; is given by

hy; = uyy; sin (1’7r~
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These modes are neither TE nor TM, but are characterized
by the absence of a y-directed E field. Modes are numbered
consecutively, i.e.,,¢=1,2,3, - - - ;andj=1,2,3, - - - , where
each value of ¢ corresponds to particular values for p and g,
etc. Due to symmetry, not all modes are excited; p and 7 are
always odd, ¢ and s are even (or 0) for this geometry and
excitation.

Consider the mode ¢=1 with strength @, emanating from
a matched source in waveguide ¢ and impinging on waveguide

(6)
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b (the slot) at junction 1 (see Fig. 1). Taking E to be the total
transverse electric field at the discontinuity, the field ex-
panded in terms of modes just below junction 1 is

E=(1+paie, + Z i€y (7

=2

where p is the reflection coefficient for mode 7= 1, and the a;
are the coefficients of the backscattered modes. The total
transverse magnetic field H is expressed by

H = (1 - p)atha — 2 ah,. (8)

g2

Referring again to Fig. 1, the fields in waveguide b just
above junction 1 are to be expressed in terms of modes in b.
However, one must account for the reflection of these modes
from junction 2, since each transmitted mode j reaching junc-
tion 2 will scatter power into other modes %, some of which
return to junction 1. It is therefore necessary to account for
these returned waves, as well as for the positively directed
ones, when summing modes. In order to do this, a scattering
coefficient S;; is defined as equal to the mode coefficient by, of
the kth backscattered mode present just above junction 1 due
to mode j scattering from junction 2. Clearly, to find the fields
due to one wave incident on the slot, junction 2 must be solved
for each j mode. These tedious computations can be avoided
for this problem since the obstacle is symmetric about the
2z=1/2 plane. By using symmetric and antisymmetric excita-
tions, we can find the T-equivalent circuit parameters without
evaluating a complete set of scattering coefficients. Symmetric
excitation of the slot is obtained by having two modes in the
waveguide, one traveling in the -4z direction and the other in
the —3z direction, such that the E fields are in phase in the
2=1/2 plane; antisymmetric excitation is obtained if these
modes are 180° out of phase. For symmetric excitation, an
open circuit appears at the symmetry plane; antisymmetrical
excitation produces a short circuit. Under these conditions,
Siz=0 for j %k, and

Sip =+ e Tt 9

where I'; is the propagation constant for mode j in guide b.
For a rectangular slot with modes as defined previously

[(4)-(6)]
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The plus and minus signs in (9) correspond to symmetrical
and antisymmetrical excitation, respectively. With antisym-
metrical excitation, the computed input impedance of the

window is equal to the upper arm impedance Z,, of the equiva-
lent T circuit, so that

r; = (10)

Zn 14+ pa

= (11)

YA 1—p,
where p, is the dominant mode reflection coefficient [see (7)]
with antisymmetric excitation and Zy, is the waveguide im-
pedance. The common branch impedance Z;; can be found
from the above equation and from the fact that for symmetri-
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cal excitation we have

Zm + 2Z12 B 1 + Ps (12)
Zwe 1— ps

with p; the reflection coefficient for symmetric excitation.
With either symmetric or antisymmetric excitation, the
fields in region b just above junction 1 are given by

E=3 bey(l +55) (13)
sy
H=Y byl — S, (14)

=1

where b; is the coefficient of the jth mode.

To solve for the unknown coefficient p, the boundary condi-
tions at the discontinuity must be satisfied: continuity of
transverse electric and magnetic fields across the aperture,
and zero tangential E at the surface which contains the
window.

In waveguide region a [4, p. 230]

feaz X ham‘ug ds =0 (15)

a

where m is a mode number in waveguide a, i<m, and [, ds
denotes an integration over the cross section of waveguide a.
Following Wexler’s procedure, we enforce continuity of trans-
verse electric field at junction 1 by equating (7) with (13),
taking the cross product with hgm, and integrating, keeping in
mind the orthogonality relation of (15). The results are

(1 + p)alf €41 X hal'uz dS

_ Sy f e X ha-tt, ds-(1 + 5;) (16)
7=1 b
for m=1 and

amf €am X ham'uz ds

= b,f €s,; X ham'uz dS'(1 + Sjj) (17)
=1 b

J

for m541, where [ ds denotes an integration over the cross
section of waveguide b.

To provide continuity of the transverse magnetic field
through the aperture, we equate (8) and (14), take a cross
product with ey, and integrate. By using the orthogonality
relation

febn X hb,--uz ds =0 (18)
b

the result is

(1 — p)(llfebn X hal-uz ds — Zdl
b

=2

€bn X hai'uz ds
b

= bn(l - Snn) f €yn X hbn'uz ds. (19)
b
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If we now substitute (17) into (19) and change index m to 1,
the a; coefficients are eliminated, and we obtain the equation

N b] M
pfebn X bt ds + 0, —
b

j=1 Q1 =2

f e; X hai-u, ds(1 + S;)
b

M €y, X hal ‘U, (ZS
b

fe,,_i X hgi-u. ds

bn
+ — (1 - Snn)febn X hon U, ds
b

a;

= febn X hal'uz dS. (20>
b

Since the computer can solve only a limited number of equa-
tions, the infinite series were truncated at M/ and N, where M/
and N are the number of modes used to approximate the
fields in waveguide regions a and b, respectively. Equation (20)

is really N linear equations corresponding to n=1,2,3, - - - | N.
There are N-+1 unknowns, namely, p and the N modal coeffi-
cients in waveguide b((bi/a1), (bs/a1), - - -, (by/a1)), but by
dividing (16) by @1 and rearranging, we have

N b

7
,Df e X hyru.ds — Z —(1 +Sjj)febj X heiu, ds
a =1 1 b

= -fea1><ha1-uzds (21)

which, in combination with (20), forms a system of N+1
linear equations with N+ 1 unknowns.

The integrations are fairly straightforward for this prob-
lem, and are as follows:

f €ui X hai'uz ds

w v X
ya,-f f sin? (@2> cos? (9L> dx dy
0o Yo w v

fl

_ {0.25 WY Vai, ifg#0
1050wy yay,  ifg =0 (22)
feb]- X hbj'uz ds
b
(w+t)/2 (v+h) /(2 2y — w +
= ybjf f sin? (7’71""—’*—5
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- { o (23)
0.50 th vy, ifs =0
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Fig. 2. Calculated and measured values of the transmission coefficient

for a 0.063-in-thick rectangular slot in a waveguide versus frequency.
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Fig. 3. Calculated and measured values of the equivalent impedance Zeq for a 0.063-in-thick

rectangular slot in a waveguide versus frequency.

The results in (22)—(24) are substituted into (20) and (21)
when making calculations.

By solving the system of equations [i.e., (20) and (21)]
for p, using both symmetric and antisymmetric excitation and
the appropriate equation [i.e., (11) or (12)], equivalent-T
circuit parameters are determined. It is now a simple matter
to calculate the reflection and transmission coefficients.

The transmission coefficient versus frequency for an actual
window, as measured with a slotted line, is shown in Fig. 2.
Also shown is the same data calculated using the above pro-
cedure. The agreement is very good. In order to compare the
calculated phase information with measured data, we show
in Fig. 3 calculated and measured values of the normalized
equivalent impedance Z,, at the front of the window (i.e., at
junction 1). A unit impedance transmission line terminated
with this normalized impedance Z., has the same reflection
coefficient as the waveguide containing the rectangular win-
dow, providing the window is backed by a matched load.
Again good agreement is obtained between the calculated and
measured values.

The data in Figs. 2 and 3 were calculated using 6 modes in
the window and 120 modes in the waveguide. However, the
number of modes used to approximate the fields did not ap-
pear to be critical. Values for the equivalent circuit parameters
agreed to within a few percent when the number of modes in
waveguide b was varied from 6 to 9, and when the number of
modes in guide a was varied from 100 to 120. Since such good
agreement was obtained between the calculated and mea-
sured values, there seemed to be no doubt that convergence
was obtained.

The calculations were made using an IBM 360/75 com-

puter. The simultaneous equations were solved using IBM
software modified to handle complex arithmetic.

Finite CoNDUCTIVITY

For thin windows, the agreement between measured and
calculated values of the equivalent impedance Z,, at the
window was excellent, as shown in the previous section. How-
ever, the thickest window that was measured (/>X) did not
show such good agreement between measurements and calcu-
lations using the modal analysis method as described previ-
ously. The calculations predicted perfect transmission at
resonance, whereas the measurements showed an appreciable
transmission loss. One source of loss might be the currents
flowing on the metal containing the window (i.e., the hatched
area in Fig. 1). One would expect the currents flowing on this
surface to be relatively independent of the window thickness
(i.e., the ] dimension). Since windows up to 3/16 in thick did
not have appreciable transmission loss, it was felt that this
loss mechanism was relatively unimportant. Thus the most
significant source of heat loss was felt to be the currents flow-
ing on the waveguide walls.

Using a perturbational method, Harrington [3] gives the
attenuation constant due to imperfectly conducting guide
walls as

—_li+2ta] e
o = — (fe

v — Go/fEL
where R is the surface resistance, 7= \/;7/—5), o is the cutoff
frequency of the waveguide, and ¢ and % are shown in Fig. 1.
The waveguide of region a is operated well above cutoff, so
that very little attenuation occurs. However, for a narrow
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Fig. 4. Calculated and measured values of the equivalent impedance Z.q, for a 4.1-in-thick
rectangular slot in a waveguide versus frequency. Calculated values for both a lossless slot

and a slot with finite conductivity are shown.

(i.e.,, A<<\) window, at resonance, {~A/2, so that resonance
occurs at approximately the cutoff frequency of waveguide
b (i.e., the window), and f ~f,. Note that for f=f,, (25) pre-
dicts a— . Obviously, this simple perturbational approach
to finite conductivity of the waveguide is not valid near cut-
off. However, it serves to indicate that the finite conductivity
of the window will have a definite effect on the transmission
properties of a thick window.

In order to account for the effects of finite conductivity of
the window near cutoff, one must consider not only the wall
losses, but also the mode coupling due to the surface currents,
Collin [4, p. 193] gives equations that contain the propaga-
tion constant v as a function of the TE and TM mode cou-
pling due to finite conductivity. Since the slots were narrow
(h<<\), TE,; modes were adequate to approximate the fields
in the slot, and for TE,, modes, the equations can be solved
for v. Substituting the correct values for the mode numbers,
we obtain

e BVt LY (Y n o
27, t s

I‘j2 7’271'2

IR,
t AN/
Solving for ;2
y? = :2_Zﬂ [721r2--2* + ﬁ_ + 12 (27
Fou 13 AN

where N is the free space wavelength and Z, is the surface
impedance of the metal containing the window, and is given by

wu\ 12 R
7, = (2—) (1 + =)

q.

(28)

where ¢ is the conductivity of the metal. Note that for infinite
conductivity, (27) reduces to v,?=TI';2, as expected. Using (27)
to obtain 7,, the scattering coefficient becomes

S,, = £ el (29)
The modes for waveguide b as given in (4)—(6) are no longer
correct, since they were derived for perfectly conducting walls.
One can approximate the modes in the lossy waveguide by
assuming that the shape of the waveguide modes, i.e., their
sine—cosine dependence, remains unchanged, but the wave
admittance or ratio of Hy to E; is changed. Using this approxi-
mation, we have

e (G G

Calculations of reflection and transmission coefficients for
narrow lossy windows were made using the previously de-
scribed modal analysis method, except that (29) and (30)
were substituted for (9) and (6), respectively. The accuracy
of these calculations is illustrated in Fig. 4, where normalized
values of Z, versus frequency are shown for a 4.1-in-thick
brass slot. The improvement in the accuracy of the modal
analysis solution obtained by including the mode-coupling
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Calculated and measured values of the equivalent impedance Zeq for a 4.1-in-thick rec-

tangular slot in a waveguide versus frequency. This is a continuation of Fig. 4, and shows the

second resonance.
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Fig. 6. Calculated values of the transmission coefficient versus frequency
for thin rectangular slots in a waveguide.

effects of finite conductivity is evident. This 4.1-in-thick slot
has a second resonance in S-band. Measured and calculated
values of Zg for frequencies near this resonance are shown
in Fig. 5. Again the agreement is excellent.

In Figs. 6 and 7 we show curves of | Tl versus frequency
for a 0.063- X1.68-in aluminum waveguide window for thick-
nesses varying from 0.000244 to 4.0 in. For the thin slots
shown in Fig. 6, the computed curves converge toward the
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Fig. 7. Calculated values of the transmission coefficient for

thick lossy aluminum slots versus frequency.

limiting value for an infinitesimally thin window. As the slots
are made thicker, the bandwidth decredses, loss increases, and
multiple resonances occur, as shown in Fig. 7.

Calculated transmission curves for somewhat wider slots
are shown in Figs. 8 and 9. Since these slots are wider, fewer
modes were required to approximate the fields in the large
waveguide. Convergence tests’ were 'made, and again the
number of modes required for convergence was not critical.

The multiple resonances for thicker slots are clearly shown
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Fig. 8.
for 0.2-in-wide rectangular slots of various thicknesses in a waveguide.

Calculated values of the transmission coefficient versus frequency

in Fig. 8. For thick slots ({ >\), simple transmission line calcu-
lations can yield reasonably accurate results. The transmis-
sion line calculations shown in Fig. 8 were made by using the
TEis mode characteristic impedances [6] and neglecting the
higher order modes at junctions 1 and 2.

It is evident that the slot shown in Fig. 9, if filled with
dielectric to lower its cutoff frequency, would have the ex-
pected transmission characteristics of a waveguide pressure
window.

CONCLUSIONS

The modal analysis method of Wexler can be used to cal-
culate the reflection and transmission properties of thick
rectangular waveguide windows. However, for thick, finitely
conducting waveguide windows, the method loses accuracy
because of mode coupling due to surface resistance. By modi-
fying the modal propagation constants so as to include these
effects, significant improvement in accuracy is obtained. This
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Fig.9. Calculated values of the transmission coefficient versus frequency
of 0.675-in-wide rectangular slots of various thicknesses in a wave-
guide.

same technique can no doubt be used to more accurately treat
other finitely conducting waveguide obstacles.
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Negative TEO-Diode Conductance by Transient

Measurement and Computer Simulation
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Abstract—A new method based on slow microwave transients
due to steep bias-voltage steps gives a detailed negative-device-
conductance function versus microwave-voltage amplitude z,. for
Gunn diodes. Measurements of GaAs and InP devices made by dif-
ferent fabrication processes as used by a variety of manufacturers
show that basic differences in behavior exist. Some of these are rep-
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resentative of high switching speeds and others of good steady-state
efficiencies. Computer simulation of Gunn devices with a range of
mobility and ionized-donor density profiles oscillating in a suitable
resonant structure leads to similar differences in negative-conduc-
tance functions. A first correlation between experimental and theo-
retical behavior is attempted, and it is possible to estimate the mobil-
ity and carrier-density profiles which could most likely be responsible
for a certain device behavior.

It is shown that an external locking signal affects the device’s
negative conductance only for small values of v,,, and experimental
results confirm that this, in accordance with theoretical expectation,
increases the switching speed only of certain types of diodes.



