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be determined at this point:

Ill-m M,–m
n= —— . ———

Tle–?ll T%e–~lz
(8)

‘=C=C3 “)
Some precautions are necessary, in particular, those due

to the determination of m.. The relation obtained (6) contains

several subtractions, both in the numerator and the denom-

inator. This calculation is very sensitive to experimental

errors; hence, the utmost care is needed during measurements.

One possible way to avoid this delicate step is to determine

m directly, which can be done by introducing the tip of a Iossy

termination inside of the loaded waveguide section [Fig. 8(c)],

in which case lz~O and ill= W. Of course, this can only be

done with rather thin slabs.
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Analysis of Thick Rectangular Waveguide Windows

With Finite
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Abstract-The modal analysis method is used to calculate the re-
flection and transmission properties of a thick rectangular window
centrally located in a rectangular waveguide. Excellent agreement is
obtained between calculated and measured values for windows of
intermediate thickness. For thicker windows made of finitely con-
ducting materials, the results obtained using perfectly conducting
waveguide modes are inaccurate. However, by modifying the modes
so as to include some of the mode-coupling effects caused by the
a.urface currents, good agreement between calculated and measured
data is obtained for a very thick, finitely conducting window.
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Conductivity

AND BENEDIKT A. MUNK

INTRODUCTION

~ N THIS PAPER we are concerned with calculating the

1 reflection and transmission properties of a thick, finitely

conducting rectangular resonant window in a rectangular

waveguide. The geometry of the problem and the coordinate

system used are shown in Fig. 1, The window is assumed to be

centered in the waveguide with the energy propagating in the

z direction.

If the slot is infinitesimally thin, i.e., 1*O, variational

techniques can be used to obtain an expression for the equiva-

lent shunt impedance from which the reflection and trans-

mission coefficients can be calculated [1, pp. 88–97 ]. For

finite values of 1, however, this method appears to be very

difficult to apply, except for the degenerate cases where the

slot width equals the waveguide width (capacitive obstacle)
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or the slot height equals the waveguide height (inductive

obstacle) .Results for these cases are given by Marcuvitz [2].

The approach used in this paper is based on the modal an-

alysis method of Wexler [3]. This is a general method that

can be applied to a broad class of waveguide discontinuity

problems. In his paper, Wexler performed calculations for a

perfectly conducting two-dimensional obstacle, and compared

his results (with good agreement) to results given in Marcu-

vitz. In this paper, modal analysis is used to analyze a three-

dimensional obstacle, and the results are compared with mea-

surements. Good agreement is-obtained for resonant windows

of intermediate thickness (O <J/X <O. 1) using perfectly con-

ducting waveguide modes to represent the fields in the window.

However, for a thick (1 =X), narrow (k <<t), finitely con-

ducting (brass) resonant window, the results obtained using

modal analysis do not yield such good agreement with mea-

surements. However, by modifying the propagation constant

of the waveguide modes used to represent the fields in the

window so as to include the mode coupling due to surface cur-

rents, a significant improvement in accuracy is obtained.

PERFECTLY CONDUCTING WAVEGUIDE WINDOW

In order to apply the modal analysis method, we consider

our rectangular window to be a small waveguide, denoted as

region b in Fig. 1, while the large waveguide is denoted as

region a. The problem is now treated as a waveguide j unction

problem. The transverse components of the modes in region

a are [1, p. 21]

“=uzsin(-%cos(?)e

—

‘a’=u’aisine)cos(?) -“=/3
p(pr’

Wv

“Cousin

(1)

(2)

where u% and UU are unit vectors, P and q are the conventional

mode numbers, and yai is the wave admittance of the ~th mode

given by

/; k

Similarly, in region b [i.e., (w–t)/2<y<(w+t)/2 and

(~ – h)/2 < z< (v+?z)/2 ], the transverse components of the

modes are

(
2y–w+t
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(4)

a

JUNCTION

L --_ T-_/_;-_

+ ---L-L , -

.
—L. .

k
JUNCTION

I

y

a

Fig, 1. Geometry and coordinate system for a thick
rectangular slot in a rectangular waveguide.
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where r and s are the mode numbers and Ybjis given by

(?;)2- (:)2

“/(32+(;)2-(:)2““)
These modes are neither TE nor TM, but are characterized

by the absence of a y-directed E field. Modes are numbered

consecutively, i.e., i= 1, 2, 3, . . . , andj= 1, 2, 3, . . . , where

each value of i corresponds to particular values for p and q,

etc. Due to symmetry, not all modes are excited; p and r are

always odd, q and s are even (or O) for this geometry and

excitation.

Consider the mode i = 1 with strength al emanating from

a matched source in waveguide a and impinging on waveguide
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b (the slot) atjunctionl (see Fig. 1). Taking Etobe the total

transverse electric field at the discontinuity, the field ex-

panded in terms of modes just below junction 1 is

03

E = (1 + p)ale.l + ~ aie.i (7)
a=2

where p is the reflection coefficient for mode i = 1, and the at

are the coefficients of the backscattered modes. The total

transverse magnetic field His expressed by

m

H = (1 — p)alh.l — ~ ah. (8)
i= 2

Referring again to Fig. 1, the fields in waveguide b just

above junction 1 are to be expressed in terms of modes in b.
However, one must account for the reflection of these modes

from junction 2, since each transmitted mode j reaching j unc-

tion 2 will scatter power into other modes k, some of which

return to junction 1. It is therefore necessary to account for

these returned waves, as well as for the positively directed

ones, when summing modes. In order to do this, a scattering

coefficient Sj~ is defined as equal to the mode coefficient bk of

the kth backscattered mode present just above junction 1 due

to modej scattering from junction 2. Clearly, to find the fields

due to one wave incident on the slot, j unction 2 must be solved

for each j mode. These tedious computations can be avoided

for this problem since the obstacle is symmetric about the

z = 1/2 plane. By using symmetric and antisymrnetric excita-

tions, we can find the T-equivalent circuit parameters without

evaluating a complete set of scattering coefficients. Symmetric

excitation of the slot is obtained by having two modes in the

waveguide, one traveling in the +Z direction and the other in

the – z direction, such that the E fields are in phase in the
z = 1/2 plane; antisymmetric excitation is obtained if these

modes are 180° out of phase. For symmetric excitation, an

open circuit appears at the symmetry plane; ant.asymmetrical

excitation produces a short circuit. Under these conditions,

..$@=O forj#k, and

cal excitation we have

z. + 2Z12 l+p,
— . ——— (12)

z W3 l–p.

with p. the reflection coefficient for symmetric excitation.

With either symmetric or antisymmetric excitation, the

fields in region b just above junction 1 are given by

E = ~ bje~j(l + Sjj) (13)

(14)

where b; is the coefficient of the ith mode.

To solve for the unknown coefficient p, the boundary condi-

tions at the discontinuity must be satisfied: continuity of

transverse electric and magnetic fields across the aperture,

and zero tangential E at the surface which contains the

window.

In waveguide region a [4, p. 230]

S
eat X ham. u.ds = O (15)

a

where m is a mode number in waveguide a, z #m, and ~a ds

denotes an integration over the cross section of waveguide a.

Following Wexler’s procedure, we enforce continuity of trans-

verse electric field at junction 1 by equating (7) with (13),

taking the cross product with ham, and integrating, keeping in

mind the orthogonality relation of (15). The results are

(1 + P)al
s

eal X h.l. u, ds
a

for m = 1 and

Sjj = i- e–r~z (9) am
s

e.m X h.m. u, ds

where I’j is the propagation constant for mode ,j in guide b.
a

For a rectangular slot with modes as defined previously
S b,~ eb,X h.~.u. ds(l + S,J (17)

[(4)-(6)]

.

j= 1 b

‘i= KmFw- ’10)
The plus and minus signs in (9) correspond to symmetrical

and antisymmetrical excitation, respectively. With antisym-

metrical excitation, the computed input impedance of the

window is equal to the upper arm impedance Z~ of the equiva-

lent T circuit, so that

z. l+pa
.

z w 1–;
(11)

where p. is the dominant mode reflection coefficient [see (7)]

with antisymmetric excitation and ZWE is the waveguide im-

pedance. The common branch impedance Z12 can be found

from the above equation and from the fact that for symmetri-

for m #1, where fb ds denotes an integration over the cross

section of waveguide b.
To provide continuity of the transverse magnetic field

through the aperture, we equate (8) and (14), take a cross

product with ebn, and integrate. By using the orthogonality

relation

the result is

(18)

= bm(l – S.n)
s

ebn x hbn.Uz ds. (19)
b
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If we now substitute (17) into (19) and change indexm to;,

the a~ coefficients are eliminated, and we obtain the equation

s
ebj X /Zai .Ug dS(l + Sj~)

b
“s

C?bnX hal. u. ds

s
b

e.j X hac.u, ds
a

+ : (1 – s..) s
eb. X hbn .uZ ds

b

o
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.
s

(%. X hal. IL ds.
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Since the computer can solve only a limited number of equa-

tions, the infinite series were truncated at M and N, where M

and N are the number of modes used to approximate the

fields in waveguide regions a and b, respectively. Equation

is really N linear equations corresponding to n = 1, 2, 3, . . ., IV.

There are N+ 1 unknowns, namely, p and the IV modal coeffi-

cients in waveguide b((bJaJ, (bdaJ, “ - “ , (b~/aJ), but by
dividing (16) by al and rearranging, we have

P
s

e., Xh.1.u,ds- f ‘(l +Sjj)
s

ebj X hai. uz ds
a j=l al b

.—
s

e., X hal.u, ds (21)
a

which, in combination with (20), forms a system of iV+ 1

linear equations with N+ 1 unknowns.

The integrations are fairly straightforward

lem, and are as follows:

s
e.i X h.i *u, ds

a

for this prob-

{

0,25 WV y.i, ifq#O
.

0.50 Wv yai, ifq=O

s
t?bj X hbj ,UZ ds

b

“( 2x–v+h
COS2 Sn-.

)
— dx dy

2h

{

0.25 th Ybj, ifs#O
——

o.5~ th Ybj, ifs=O

(22)

(23)
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Fig. 2. Calculated and measured values of the transmission coefficient
for a 0.063-in-thick rectangular slot in a waveguide versus frequency.

“Sin(%)”cos(s””>+)
()qlrx

- Cos –— dx dy
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(24)
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Fig. 3. Calculated and measured values of the equivalent impedance Z.q for a 0.063.in-thick
rectangular slot ina waveguide versus frequency.

The results in (22)-(24) are substituted into (20) and (21)

when making calculations.

Bysolving the system of equations [i.e., (20) and (21)]

for p, using both symmetric and antisymmetric excitation and

the appropriate equation [i.e., (11) or (12)], equivalent-T

circuit parameters are determined. It is now a simple matter

to calculate the reflection and transmission coefficients.

The transmission coefficient versus frequency for an actual

window, as measured with a slotted line, is shown in Fig. 2.

Also shown is thesame data calculated using the above pro-

cedure. The agreement is very good. In order to compare the

calculated phase information with measured data, we show

in Fig. 3 calculated and measured values of the normalized

equivalent impedance Zeq at the front of the window (i.e., at

junction 1). A unit impedance transmission line terminated

with this normalized impedance Z.Q has the same reflection

coefficient as the waveguide containing the rectangular win-

dow, providing the window is backed by a matched load.

Again good agreement is obtained between the calculated and

measured values.

The data in Figs. 2 and 3 were calculated using 6 modes in

the window and 120 modes in the waveguide. However, the

number of modes used to approximate the fields did not ap-

pear to be critical. Values for the equivalent circuit parameters

agreed to within a few percent when the number of modes in

waveguide b was varied from 6 to 9, and when the number of

modes in guide a was varied from 100 to 120. Since such good

agreement was obtained between the calculated and mea-

sured values, there seemed to be no doubt that convergence

was obtained.

The calculations were made using an IBM 360/75 com-

puter. The simultaneous equations were solved using IBM

software modified to handle complex arithmetic.

FINITE CONDUCTIVITY

For thin windows, the agreement between measured and

calculated values of the equivalent impedance Z,a at the

window was excellent, as shown in the previous section, How-

ever, the thickest window that was measured (1>k) did not

show such good agreement between measurements and calcu-

lations using the modal analysis method as described previ-

ously. The calculations predicted perfect transmission at

resonance, whereas the measurements showed an appreciable

transmission loss. One source of loss might be the currents

flowing on the metal containing the window (i.e., the hatched

area in Fig. 1). One would expect the currents flowing on this

surface to be relatively independent of the window thickness

(i.e., the J dimension). Since windows up to 3/16 in thick did

not have appreciable transmission loss, it was felt that this

loss mechanism was relatively unimportant. Thus the most

significant source of heat loss was felt to be the currents flow-

ing on the waveguide walls.

Using a perturbational method, Barrington [5] gives the

attenuation constant due to imperfectly conducting guide

walls as

R
~ . .—.—

[
1 + ; (f./f)’ 1 (25)

hqdl – (fC/j)’

where R is the surface resistance, v = ti~c), f~ is the cutoff

frequency of the waveguide, and t and h are shown in Fig. 1.

The waveguide of region a is operated well above cutoff, so

that very little attenuation occurs. However, for a narrow
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Fig. 4. Calculated and measured values of the equivalent impedance Z,a for a 4.1-in-thick
rectangular slot in a waveguide versus frequency. Calculated values for both a lossless slot
and a slot with finite conductivity are shown.

(i.e., h<<~) window, at resonance, t=h/2, so that resonance

occurs at approximately the cutoff frequency of waveguide

b (i.e., the window), and f=f,. Note that for f=j., (25) pre-

dicts a+ m. Obviously, this simple perturbational approach

to finite conductivity of the waveguide is not valid near cut-

off. However, it serves to indicate that the finite conductivity

of the window will have a definite effect on the transmission

properties of a thick window.

In order to account for the effects of finite conductivity of

the window near cutoff, one must consider not only the wall

losses, but also the mode coupling due to the surface currents.

Collin [4, p. 193] gives equations that contain the propaga-

tion constant ~ as a function of the TE and TM mode cou-

pling due to finite conductivity. Since the slots were narrow

(h<<X), TE,O modes were adequate to approximate the fields

in the slot, and for TErO modes, the equations can be solved

for T. Substituting the correct values for the mode numbers,

we obtain

.—
(Tj’ – r,’)<– l~~~h

2Z,. ‘[(7)2-(:)21(2’+’)
r+2 ~2T2

— —_———— ._— . ()

Solving for -f~2

– 2.2.,
-f>

2 . ___

jwp

:(32-(33 ‘ ‘“”

[

2 4T2

1
t-v-- + — + rja

ts h~,

(26)

(27)

where k is the free space wavelength and Z~ is the surface

impedance of the metal containing the window, and is given by

()z. = ; 1’2(1 + ti=l) (28)

where u is the conductivity of the metal. Note that for infinite

conductivity, (27) reduces to ~j? =1’j2, as expected. using (27)

to obtain 7J, the scattering coefficient becomes

S,, = + e–’~Z. (29)

The modes for waveguide b as given in (4)–(6) are no longer

correct, since they were derived for perfectly conducting walls.

One can approximate the modes in the Iossy waveguide by

assuming that the shape of the waveguide modes, i.e., their

sine-cosine dependence, remains unchanged, but the wave

admittance or ratio of IIu to Ex is changed. Using this approxi-

mation, we have

Calculations of reflection and transmission coefficients for

narrow lossy windows were made using the previously de-

scribed modal analysis method, except that (29) and (30)

were substituted for (9) and (6), respectively. The accuracy

of these calculations is illustrated in Fig. 4, where normalized

values of Zcq versus frequency are shown for a 4. l-in-thick

brass slot. The improvement in the accuracy of the modal

analysis solution obtained by including the mode-coupling
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Fig. 5. Calculated and measured values of the equivalent impedance Z.~fora 4.1-in-thick rec-
tangular slot inawaveguide versus frequency. This isa continuation of Fig. 4,and shows the
second resonance.
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Fig.6. Calculated values of thetransmission cwfficient versus frequency
for thin rectangular slots in a waveguide.

effects of finite conductivity is evident. This 4.1-iin-thick slot

has a second resonance in .S-band. Measured and calculated

values of Z~ for frequencies near this resonance are shown

in Fig. 5. Again the agreement is excellent.

In Figs. 6 and 7 we show curves of I T\ versus frequency

for a 0.063-X 1.68:in aluminum waveguide window for thick-

nesses varying from 0.000244 to 4.0 in. For the thin slots

shown in Fig. 6, the computed curves converge toward the

o

-2—— o.le7”THlcK—-— 0,50.
— — 1.0”. . . ....z.o~-4——..—4.0.

ITI(dBl

-6—

-6—

-lo—

-122.e 3.0 3.2 3.4 3.6 3.6 4.0 4
FREQUENCY (GM

2

Fig. 7. Calculated values of the transmission coefficient for
thick 10SSYaluminum slots versus frequency.

limiting value for an infinitesimally thin window. As the slots

are made thicker, the bandwidth decreases, loss increases, and

multiple resonances occur, as shown in Fig. 7.

Calculated transmission curves for somewhat wider slots

are shown in Figs. 8 and 9. Since these slots are wider, fewer

modes were required to approximate the fields in the large

waveguide. Convergence tests’ were made, and again the

number of modes required for convergence was not critical.

The multiple resonances for thicker slots are clearly shown
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Fig. 8. Calculated values of the transmission coefficient versus frequency
for 0.2-in-wide rectangular slots of various thicknesses in a waveguide.

in Fig. 8. For thick slots (1>A), simple transmission line calcu-

lations can yield reasonably accurate results. The transmis-

sion line calculations shown in Fig. 8 were made by using the

TE1o mode characteristic impedances [6] and neglecting the

higher order modes at junctions 1 and 2.

It is evident that the slot shown in Fig. 9, if filled with

dielectric to lower its cutoff frequency, would have the ex-

pected transmission characteristics of a waveguide pressure

window.

CONCLUSIONS

The modal analysis method of Wexler can be used to cal-

culate the reflection and transmission properties of thick

rectangular waveguide windows. However, for thick, finitely

conducting waveguide windows, the method loses accuracy

because of mode coupling due to surface resistance, By modi-

fying the modal propagation constants so as to include these

effects, significant improvement in accuracy is obtained. This

k--- 2.84 ~

/ ,:/
-12

: I
2,2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4 2

FREQUENCY [GM. )

Fig. 9. Calculated values of the transmission coefficient versus frequency
of 0.675-in-wide rectangular slots of various thicknesses in a wave-
guide.

same technique can no doubt be used to more accurately treat

other finitely conducting waveguide obstacles.
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Negative TEO–Diode Conductance by Transient

Measurement and Computer Simulation

HANS L. HARTNAGEL AND MITSUO KAWASHIMA

Abstract—A new method based on slow microwave transients
due to steep bias-voltage steps gives a detailed negative-device-
conductance function versus microwave-voltage amplitude ZJS.for
Gunn diodes. Measurements of GSAS and InP devices made by dif-
ferent fabrication processes as used by a variety of manufacturers
show that basic cliff erences in behavior exist. Some of these are rep-
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resentative of high switching speeds and others of good steady-state
efficiencies. Computer simulation of Gunn devices with a range of
mobility and ionized-donor density profiles oscillating in a suitable
resonant structure leads to similar differences in negative-conduc-
tance functions. A first correlation between experimental and theo-
retical behavior is attempted, and it is possible to estimate the mobil-
ity and carrier-density profiles which could most likely be responsible
for a certain device behavior.

It is shown that an external locking signal affects the device’s
negative conductance only for small values of va,, and experimental
results confirm that thks, in accordance with theoretical expectation,
increases the switching speed only of certain types of diodes.


